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Comparing efficiency estimates from 
familiar stochastic frontier models 
 
 

Abstract 
 

This paper compares the total factor productivity (TFP) scores generated from 

two panel datasets with two common stochastic frontier methods. Likelihood 

ratio tests determine model specification as usual. The first dataset (sheep) 

reveals that while there is sometimes little practical difference between the 

estimates obtained with the two methods, they can vary systematically and 

appear to be biased upwards by the more flexible error components method. 

There is even stronger evidence from the wine panel that this is in fact the case, 

and differences increase as time passes. It also seems as if the less flexible error 

components model emphasizes fixed factors (land, labour) over variable inputs 

(feed, chemicals, fuel). The two methods produced similar conclusions about the 

error structure. Model selection can therefore be a matter of convenience, but 

comparisons between studies should be handled with care. 

 

 

1 Introduction 
 

The different ways to determine total factor productivity include index number 

methods, non-parametric programming and stochastic frontier models. In 

datasets that cover long periods, the objective is often to determine technical 

change usually with index number methods (e.g. Conradie et al., 2009; Salim 

and Islam, 2010). For cross section data or short fat panels where technical 

change is unlikely, the emphasis is more commonly on measuring and 

understanding efficiency changes. In this case the literature prefers stochastic 

frontier methods in which estimates come with confidence intervals to data 

envelopment analysis which applies a linear programming algorithm to compute 

efficiency scores. Occasionally one comes across studies which compare 

parametric and non-parametric approaches (e.g. Andor and Hesse, 2011; Huynh-

Truong, 2009; Bojnec and Latruffe, 2009) or Cobb Douglas and translog 

specifications of the same production frontier (e.g. Naqvi and Ashfaq, 2013; 

Conradie 2017), but different variants of the stochastic frontier method are not 

routinely compared. 
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Two of the most common stochastic frontier methods are the error components 

(Battese and Coelli, 1992) and technical efficiency effects models (Battese and 

Coelli, 1995). The latter is popular because it conveniently fits a frontier and 

explains deviations from it in a single step which generates noisy efficiency 

estimates. Consequently, efficiency trends from these models are often not 

reported (e.g. Piesse et al., 2018), or are smoothed by fitting secondary 

regressions (Conradie et al., 2009). The error components method which fits 

monotonically increasing or decreasing sets of scores generated from a mean 

divergence (η) trend and the dispersal of scores in the terminal period (uiT) offers 

a shortcut. This method which was recently used to investigate the effects of 

weather conditions on farm productivity in the Karoo (Conradie et al., 

forthcoming) that could open a new direction of enquiry in climate change 

studies. 

 

The purpose of this study is to learn how the choice of stochastic frontier 

method affects he efficiency scores generated. The literature does not contain 

any direct comparisons. 

 

A brief description of the data and the model specifications appears in Sections 

2 and 3. Section 4 reviews the statistical results for two small panel datasets 

(sheep, wine). Section 5 compares the efficiency output from the two methods 

for these two cases and the paper ends brief conclusions. 

 

 

2 Datasets 
 

Conradie et al. (forthcoming) fitted an error components model to an unbalanced 

panel of 75 sheep farms over three years (n = 199). The model explained sheep 

and wool income with the number of stock sheep in the flock, wages as a proxy 

for labour use, fuel as a proxy for machinery, and a composite variable of sheep 

consumables that include feed, veterinary costs and ram purchases. High 

collinearity of stock sheep and grazing land required that one or the other be left 

out and it was decided to go with sheep rather than land because some properties 

in the study area are lifestyle farms (Reed and Kleynhans, 2009). Flock size is 

measured as number of breeding ewes and wethers kept for wool. All other 

items including output are deflated with their appropriate deflators as published 

in the Abstract of Agricultural Statistics (DAFF, 2017). The summary data in 

Table 1 are in constant 2010 ZAR. 
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Table 1: Descriptive statistics for the datasets used to compare models 
 
  Sheep panel  

n =199 

Wine panel 

 n = 847 

Variable Units Mean Std. dev. Mean Std. dev. 

Income R thousands 627 666 3591 3036 

Land Hectares   106 90 

Wages R thousands 64 58   

Labour FTE jobs   45 38 

Crop chemicals R thousands   359 345 

Irrigation R thousands   194 161 

Fuel R thousands 84 69 168 143 

Electricity R thousands   125 129 

Stock sheep Number 902 925   

Consumables R thousands 70 85   

 

Piesse et al. (2018) fitted a technical efficiency effects model to a balanced panel 

dataset for 77 wine farms over 11 years (n = 847) to conduct a regional analysis 

of the wine industry. The model explained income from wine grapes with land 

(vineyard size), wages, pesticides, fertiliser, fuel and electricity, which were all 

statistically significant at the 95% confidence level. The inefficiency module 

contained eight variables of which half explained firm performance. For this 

study fertiliser and pesticides were combined as crop chemicals and labour was 

measured in fulltime equivalent jobs according to the assumptions in Conradie 

et al. (in press). Land is area planted to wine grapes, in hectares. Chemicals and 

fuel are in thousands of ZAR deflated with a crop protection and fuel price 

index. Irrigation, also in thousands of ZAR, combines the two main irrigation 

costs, water and electricity, and is deflated with an electricity price index. 

Output was made quality adjusted by deflating by CPI and the financial wine 

data in Table 1 represent constant 2010 values. 

 

The sheep and wine datasets differ in two main ways. The eleven-year time span 

of the wine panel makes it more likely that it will pick up Hicks neutral 

technical change than the three-year sheep panel, especially since grape growing 

has made more technical progress over recent decades than extensive sheep 

rearing (Conradie et al., 2009). It is expected the wine efficiencies will all be 

relatively close to the frontier as the panel was compiled from study group data 

where technology transfer is assumed to be high. Most wine grapes are also 

irrigated. The sheep panel which derives from a community survey conducted 

under both good and average growing conditions is expected to yield a greater 

variety of efficiency estimates. 
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3 Model specifications 
 

Consider a translog stochastic production frontier with an exogenous time trend 

(e.g. Hadley, 2006): 

 

ln𝑌𝑖𝑡 =𝛼0 + 𝛼𝑘

𝐾

𝑘=1

ln𝑥𝑘𝑖𝑡 +  𝛼𝑗𝑘

𝐽

𝑗=1

ln 𝑥𝑘𝑖𝑡 ln𝑥𝑗𝑖𝑡

𝐾

𝑘=1

+ 𝛼𝑡1𝑡𝑖𝑚𝑒 + 𝛼𝑡2𝑡𝑖𝑚𝑒
2

+ 𝑣𝑖𝑡 − 𝑢𝑖𝑡  
 

[1] 

 

where all inputs and output are logged and mean-centred. Yit is output produced 

by the ith firm in period t, xkit is the kth input used by firm i in period t and vit is an 

independently and identically distributed error term N . The second half of 

the term error term -uit, captures firm i’s deviation from the best practice frontier 

in period t. For the wine panel k = 5 and for the sheep dataset k = 4. The αk and 

the αjk are the parameters of the translog function to be estimated. The 

parameters αt1 and αt2 determine the rate of technical progress, if any. 

 

In the error components version of the translog stochastic frontier, efficiencies 

are determined by a firm-level rate of convergence, ηit, and the firm’s efficiency 

in period in the terminal period T, μi, as follows: 

 

    [2] 

 

The amount of error variance explained by inefficiency is captured by the 

parameter γ =  (Battese and Corra, 1977). If γ = 0 a mean response 

function is a sufficient representation of the data, and no systematic inefficiency 

effects can be claimed. If γ >0, the inefficiency term μit can follow a truncated 

normal N( ) or half-normal distribution N  depending on the estimated 

value of the parameter μ. If μ =0 the distribution is half normal and otherwise it 

is truncated normal. Since fitting a frontier involves the estimation of three 

additional parameters μ, η and γ, the likelihood ratio test that compares this 

specification to the mean response function (OLS) has three restrictions. The test 

statistic, LR = -2(LLHr – LLHu), is chi-square distributed with degrees of 

freedom equal to the number of restrictions. The subscripts stand for restricted 

and unrestricted. This test can determine model specifications in nested models 
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fitted with maximum likelihood routines, in this case implemented with 

FRONT 4.1 because it can deal with unbalanced panels (Coelli, 1996). 

 

Several likelihood ratio tests are performed to determine model specification. 

Test 1 hypothesises that αt2 = 0, in other words that technical progress is a linear 

process in the error components model. Test 2 checks for evidence of growth by 

asking if αt1 = 0 in the same model. In Test 3, which the translog functional form 

is compared to Cobb Douglas, proposes that αjk = 0 for all j and k. The time 

trend selected in tests 1 and 2 are included. Test 4 checks for a frontier by 

assuming that γ = μi = ηit = 0 (Battese and Coelli, 1992). Since the test statistic 

for this test follows a mixed chi-square distribution critical values are taken from 

Kodde and Palm (1986). 

 

In the technical efficiency effects version of the stochastic frontier model, the 

inefficiency module is a linear function of a set of firm and environmental 

characteristics, zmit, which are often dummy variables or simple percentages as 

the coefficients δm are difficult to interpret due to the distribution of the 

inefficiency term. The -uit are the inefficiency effects obtained from the frontier, 

the δm are parameters to be estimated and wit is an i.i.d. error term. 

 

      [3] 
 

For the wine panel eight z-variables were formulated from the available 

viticulture and accounting data (Piesse et al., 2018). The richer sheep dataset 

contains fourteen possible z-variables, of which ten worked in a Cobb Douglas 

specification and fewer in the translog. Nine of the ten z-variables remained 

significant in the translog specification, but the coefficients on the frontier 

variables became insignificant (Conradie, 2017).  

 

To make the specifications as similar as possible the inefficiency module was 

restricted to time and time-squared in this study. These two variables plus a 

constant term let the inefficiencies vary across firms and years in the technical 

efficiency effects method. The source of the variation over time could be 

weather or market conditions and depending on the combination of time 

parameters fitted, it could increase or decrease at an increasing or decreasing 

rate. In the error components model the set of predicted inefficiencies is 

restricted to either increase at a decreasing rate or decrease at an increasing rate 
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(Battese and Coelli, 1992). If η < 0, inefficiencies increase monotonically over 

time, which is consistent with δ1 >0. In the technical efficiency effects method 

spatial variation is captured by the constant term which responds to firm and 

operator differences. By moving time and time-squared into the frontier, the 

error components method allows for the possibility of Hicks neutral technical 

progress, which is not investigated in the technical efficiency effects model. 

 

To specify the technical efficiency effects model three more likelihood ratio 

tests are run. The first of these (test 5) comes with the final maximum likelihood 

estimates in FRONT 4.1. The existence of the frontier requires that δm = 0 = γ, is 

rejected. The mean response function (OLS) carries four restrictions in the 

model used here (3 x δ, γ). Test 6 asks if δt2 = 0, and if so, test 7 checks if δt1 = 

0. These are worthwhile questions in models that try to understand the effects of 

climate change on regional production, although it unlikely that evidence of it 

will be found given the Karoo’s 20-25 weather cycles (Du Toit and O’Conner, 

2014). With the inefficiency module finalised, test 8 compares translog to Cobb 

Douglas by checking if αjk = 0 for all j and k. 

 

In well-behaved production functions inputs should contribute positively and 

significantly to output. In Cobb Douglas models, significant (and positive) 

coefficients add up to mean returns to scale. The same applies to translog 

models fitted with mean-centred data. The coefficients on the squares and cross 

products vary, depending on whether a pair is substitutes (negative) or 

complements (positive). Only meaningful substitutability or complementarity 

will produce significance. There are examples in the literature where squares 

and cross products are included selectively (e.g. Theodoridis et al., 2014), but it 

is more common to include all (translog specification) or nothing (Cobb 

Douglas), which is why tests 3 and 8 are an important part of model selection. 

 

 

4 Results 
 

4.2 The sheep panel 
 

Model specification for the sheep panel is decided based on the data presented in 

Table 2. The first version of the error components model to be fitted assumed a 

truncated normal distribution on the inefficiency term which could vary over 

time. The model included four basic inputs, their squares and cross products and 

a linear time trend and its square. In test 1 the parameter on time-squared was 
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restricted to zero, which produced a likelihood ratio statistic of LR = 2.40 which 

is less than the critical value of 2.706 for one restriction at the 95% confidence 

level. The squared term was dropped. In test 2 the model was rerun with and 

without time to check for linear technical progress. With LR = 1.77 still less 

than the critical value of 2.706 for one restriction, it was concluded that sheep 

farming made no technical progress over the study period, an unsurprising result 

given that there was no technical progress in the sector over the previous fifty 

years (Conradie et al., 2009). To conduct test 3 time was dropped from the Cobb 

Douglas and translog specifications. It produced a value of LR = 54.09 which 

was greater than the critical value of 17.67 for ten restrictions, which indicated 

that translog was preferred. In test 4 that asked if γ = μi = η = 0 produced a value 

of LR = 57.89 which confirmed that the translog function was a frontier. 

 

Only three tests were needed to determine the specification of the technical 

efficiency effects model for this dataset. Test 5 checked for the joint significance 

of the inefficiency module and γ. The test statistic of LR = 75.20 rejected these 

four restrictions at the highest confidence level while test 6 indicated that both 

time trends are needed. This made test 7 obsolete. In test 8 a value of LR = 

61.36 was greater than the critical value of 17.67 for the ten restrictions imposed 

by a Cobb Douglas specification. 

 

 

Table 2 Model specification tests for the sheep panel (n = 199) 
 
Test  Restricted Unrestricted LR stat Restrictions Critical 

 

Translog Error Components Method 

αt2 = 0 -116.11 -114.91 2.40 1 2.706 

αt1 = 0 -116.99 -116.11 1.77 1 2.706 

αjk = 0 all j,k -144.04 -116.99 54.09 10 17.67 

γ = μi = η = 0 -145.94 -116.99 57.89 3 7.045 

 

Translog Technical Efficiency Effects Method 

γ = δm = 0 -145.94 -108.34 75.20 4 8.761 

δt2 = 0 -110.30 -108.34 3.92 1 2.706 

αjk = 0 all j,k -129.02 -108.34 61.36 10 17.67 
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Table 3 Estimation results for the sheep panel (n = 199). All variables in 
mean centred natural logarithms, explaining output. 
 
  

Error components method 

Technical efficiency effects 

method 

 MLE SE t-ratio MLE SE t-ratio 

Constant 0.262 0.060 4.41* 0.350 0.039 8.89* 

Stock sheep 0.743 0.080 9.25* 0.568 0.053 10.80* 

Consumables 0.098 0.035 2.84* 0.080 0.028 2.81* 

Labour 0.209 0.060 3.47* 0.205 0.048 4.26* 

Fuel 0.055 0.068 0.80 0.181 0.050 3.62* 

       

Sheep2 0.190 0.079 2.39* -0.012 0.060 -0.20 

Sheep x consumables 0.079 0.059 1.34 0.011 0.046 0.23 

Sheep x labour 0.191 0.051 3.78* 0.104 0.043 2.43* 

Sheep x fuel -0.474 0.133 -3.56* 0.018 0.100 0.18 

Consumables2  0.010 0.006 1.61 0.008 0.006 1.40 

Consumables x labour -0.086 0.043 -2.03* -0.050 0.034 -1.48 

Consumables x fuel -0.010 0.056 -0.18 0.024 0.044 0.55 

Labour x labour 0.014 0.007 2.06* 0.012 0.005 2.27* 

Labour x fuel -0.078 0.026 -3.05* 0.024 0.017 1.36 

Fuel x fuel 0.315 0.058 5.42* -0.012 0.037 -0.33 

       

Constant    -45.741 22.597 -2.02* 

Time    31.701 15.038 2.11* 

Time2    -7.376 3.498 -2.11* 

σ2 2.800 0.668 4.19* 6.838 3.258 2.10* 

γ 0.963 0.010 91.85* 0.993 0.004 249.42* 

       

μ -3.284 0.642 -5.12*    

η -0.178 0.054 -3.30*    

       

Log likelihood -116.99   -108.34   

Mean returns to scale 1.10   1.03   

Mean efficiency 70%   72%   
* p ≤ 0.05 

 

The two sets of coefficients are presented side by side in Table 3 to make clear 

how the choice of method affects signs and magnitudes of the parameters fitted. 

The number of stock sheep in the flock is the dominant factor of production in 

both cases, followed by labour (wages), sheep consumables (feed, animal 

remedies and rams) and fuel. Both methods produced significant coefficients on 

sheep, consumables and labour. Fuel’s coefficient is as expected in the technical 

efficiency effects method but insignificant in the error components model.  



 

 

 9 

The models differ substantially on stock sheep’s output elasticity. Flock size 

accounts for 74% of the variation in output in the error components model, 

which it is explains only 57% of the variation in output in the technical 

efficiency effects model. The coefficients on labour and consumables are stable 

in both models at just less than 0.20 and 0.10 respectively. In the error 

components model where fuel is not significant, its output elasticity is 0.055 and 

it increases to 0.181 in the technical efficiency effects model, where it is 

significant. The error components method finds stronger evidence of increasing 

returns to scale (RTS = 1.10) if the fuel coefficient is included that if it is 

excluded and more evidence of increasing returns to scale the technical 

efficiency effects model (RTS = 1.03). This is possibly due to a greater degree 

of attrition amongst small firms. 

 

Modelling seasonal variation explicitly in the technical efficiency effects model, 

results in fewer significant interaction effects than the simplified assumptions of 

decreasing and diverging performances indicated by η = -0.178 in the error 

components model. In the latter seven of the ten interaction terms are significant 

and all the squared terms point to increasing returns to scale. There is 

complementarity between sheep and labour and sheep and consumables, which 

makes sense. It more difficult to explain why sheep and fuel might be 

substitutions other than to blame it on the decision to apportion overheads to 

enterprises according to share of turnover. This was done in about 10% of cases. 

Consumables and labour and labour and fuel are substitutes, which is 

reasonable. Fuel and consumables are unrelated. In the technical efficiency 

effects model the only substitution effect that matters is the complementarity 

between sheep and labour, which is the only input that shows evidence 

increasing returns to scale consistent with the mean returns to scale estimate for 

this method. It shows that it is important to formally test for the inclusion of 

interaction terms and not just rely on the t-ratios on individual coefficients when 

deciding on model specification. 

 

 

4.2 The wine panel 
 

As before, the error components model specification begins with an evaluation 

of the time variables. The hypothesis that time squared is unnecessary is soundly 

rejected (LR = 32.48), which makes test 2 unnecessary. In test 3 the test statistic 

LR = 64.46 is greater than the critical value of 24.384 for the fifteen restrictions 

imposed by Cobb Douglas, which settles on translog as the preferred functional 

form. Test 4 confirms that this translog model is a frontier. The specification of 
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the technical efficiency effects model begins with a translog frontier that 

includes a constant term and time and time-squared in the inefficiency module. 

Since the test statistic in test 5 of LR = 37.63 exceeds the critical value of 8.761 

for four restrictions, a frontier is confirmed. Test 6 investigates if time-squared 

is zero and finds that it is not, which makes test 7 on the desirability of including 

a linear time trend, unnecessary. With the inefficiency module finalised, Test 8 

compares Cobb Douglas to the translog and as in the case of the error 

components model, opts for translog. 

 

Table 4 Model specification tests for the wine panel (n = 847) 
 
Test  Restricted Unrestricted LR stat Restrictions Critical 

 

Translog Error Components Method 

αt2 = 0 174.65 190.89 32.48 1 2.706 

αjk = 0 all j,k 158.66 190.89 64.46 15 24.384 

γ = μi = η = 0 -42.60 174.65 343.51 3 7.045 

 

Translog Technical Efficiency Effects Method 

γ = δm = 0 -51.13 -32.31 37.63 4 8.761 

δt2 = 0 -36.92 -32.31 9.22 1 2.706 

αjk = 0 all j,k -109.81 -32.31 141.01 15 24.384 

 

The estimation results from the two methods are compared in Table 5. The 

models agree on the relative importance of inputs which is area planted, 

followed by fuel, chemicals and irrigation and labour in a distant fourth place. In 

the error components model land accounts for more than three quarters of the 

variation in grape income, fuel for about 11% and irrigation and crop chemicals 

for about 5% each, while wages explain less than 2% of the variation in output. 

As discovered during the analysis of the sheep dataset, the technical efficiency 

effects method tends to downplay the effects of land compared to the variable 

factors. In this set of results the coefficient on area planted falls by 50%. The 

importance of fuel rises by almost 20% while the contributions of chemicals and 

irrigation increase three-fold. With mean RTS = 0.96 and RTS = 0.97 both 

models agree than there are no economies of scale in grape production over this 

range of firm sizes (100-12000 tons). 
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Table 5 Estimation results for the wine panel (n = 847). All variables in 
mean centred natural logarithms, explaining output. 
 
  

Error components method 

Technical efficiency effects 

method 

 MLE SE t-ratio MLE SE t-ratio 

Constant 0.281 0.058 4.82* 0.111 0.056 2.00* 

Land 0.754 0.059 12.84* 0.552 0.051 10.83* 

Chemicals 0.044 0.031 1.41 0.126 0.029 4.29* 

Irrigation 0.046 0.030 1.54 0.143 0.025 5.68* 

Labour 0.014 0.040 0.36 0.018 0.032 0.58 

Fuel 0.106 0.038 2.82* 0.126 0.041 3.10* 

       

Land x land -0.074 0.075 -0.99 -0.039 0.077 -0.50 

Land x chemicals -0.119 0.065 -1.82 -0.145 0.075 -1.93 

Land x irrigation 0.119 0.030 3.94* 0.112 0.036 3.07* 

Land x labour -0.103 0.076 -1.34 0.007 0.074 0.10 

Land x fuel 0.081 0.073 1.11 -0.037 0.087 -0.43 

Chem. x chem. 0.057 0.025 2.25* 0.107 0.030 3.53* 

Chem. x irrigation 0.013 0.019 0.69 -0.045 0.023 -1.93 

Chem. x labour 0.083 0.045 1.84 0.004 0.050 0.08 

Chem. x fuel -0.041 0.048 -0.85 0.061 0.058 1.04 

Irrigation x irrigation 0.007 0.002 4.24* 0.008 0.002 4.80* 

Irrigation x labour -0.055 0.026 -2.09* -0.060 0.029 -2.05* 

Irrigation x fuel -0.056 0.021 -2.67* -0.018 0.024 -0.73 

Labour x labour 0.068 0.037 1.83 0.137 0.033 4.11* 

Labour x fuel 0.022 0.053 0.41 -0.112 0.058 -1.93 

Fuel x fuel 0.011 0.006 1.85 0.018 0.007 2.49* 

Time -0.031 0.009 -3.53*    

Time squared 0.004 0.001 5.83*    

       

Constant    -0.029 0.280 -0.10 

Time     0.074 0.046 1.62 

Time squared    -0.008 0.004 -1.85 

σ2 0.113 0.028 4.00* 0.122 0.037 3.31* 

γ 0.746 0.063 11.85* 0.797 0.055 14.56* 

μ 0.392 0.120 3.28*    

η -0.032 0.009 -3.55*    

       

Log likelihood 190.89   -32.31   

Mean returns to scale 0.96   0.97   

Mean efficiency 0.70   0.77   
* p ≤ 0.05 
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Land and irrigation are complements since the cross product of these inputs are 

significant in both methods. Their combined output elasticity is 0.80 in the error 

components model and 0.695 in the technical efficiency effects model, which is 

even more important than the land proxy was in the sheep panel. Irrigation is 

only marginally significant on its own in the error components model, but is a 

significant substitute for most other inputs, while land is not. According to the 

error components method, irrigation is a significant substitute for labour and 

fuel, but not for chemicals, to which is it unrelated. The technical efficiency 

effects method finds irrigation to be a substitute for labour and chemicals but not 

for fuel.  

 

Labour and fuel are classic substitutes and should be in the wine industry which 

was rapidly mechanising in the period covered by the panel due to sharply rising 

farm wages. The error components method whose basic labour coefficient is not 

significant and very small, fails to establish that labour and fuel are substitutes, 

but the technical efficiency effects model, where labour has a bigger coefficient, 

comes closer to finding significant substitutability between labour and fuel. The 

other classic substitution is of labour saving chemicals for labour, for example 

by applying herbicide rather than digging over a field or thinning chemically 

rather than by hand. In this case, probably because the crop chemicals variable 

includes fertiliser and compost there is no evidence of this substitution. Instead 

in the error components model there is some indication of a degree of 

complementarity between these inputs. 

 

The error components method places mean efficiency at 70%. The Hicks neutral 

time trend indicates a reversal of technical progress which slows down over the 

study period while η < 0 indicates the fastest decline amongst the weakest firms. 

The technical efficiency effects method predicts a mean efficiency of 77% 

which also decreases at an increasing rate. While there is no formal measure of 

convergence, the bottom panel of Figure 2 reveals that the greatest divergence 

occurred around period 5-6 after which performances might be converging 

again. 

 

 

5 Discussion of efficiency results 
 

The effect of method choice on predicted scores is shown in Figures 1 and 2 

where each firm’s scores are plotted in a different colour. Correlations and t-

tests of means are given in Table 6. 
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Figure 1 Efficiency scores for the sheep panel  
 

Figure 1 shows that by imposing monotonicity on the efficiency scores the error 

components model disregards the outliers in period 2, which was a better season 

for some sheep farmers than period 1 and substantially worse for others. Pooling 

the years produces a high level of correlation (Pearson’s r = 0.73) between the 

two sets of estimates. The main discrepancy is in year 1 where the error 

correction model imposes a greater spread than the technical efficiency effects 

method. Several bottom outliers drop out of the sample in period 3, because they 

can live off crop income (Conradie et al., forthcoming). With period 2 as their 

terminal period, these farms end up with much lower scores in period 1 than 

when predicted with the technical efficiency effects method. In years 1 and 2 

means of the predicted efficiencies do not differ significantly and the direction 

of bias switches; year 1 the technical efficiency effects model predicts higher 

scores and in year two it predicts lower scores than the error components model. 

In year 3, when the difference is systematic, the technical efficiency effects 

method indicates a 2.5% better performance than the error components model. 

This difference is hardly material which leads to the preliminary conclusion that 

model choice is not important when conditions are normal. 

 

The wine dataset contains less dramatic seasonal variation than the sheep data. 

While the sheep efficiency scores vary from zero to 97%, with 7% of 

observations below 0.40, the minimum wine score is 36% and the number of 

observations with scores below 0.40 just 0.35%. These outliers occur in periods 

5 and 6 which results in relatively flat error components efficiency curves. 
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Table 6 Summary statistics of efficiency output by dataset and method 
 
Period Method Mean Std. Dev. Correlation t-statistic Prob. 

 

Sheep panel 

1 EC 0.732 0.029    

 TEE 0.757 0.026 0.581 -1.398 0.166 

2 EC 0.693 0.035    

 TEE 0.680 0.045 0.812 0.924 0.359 

3 EC 0.669 0.030    

 TEE 0.715 0.026 0.808 -3.293 0.002 

Pooled EC 0.700 0.032    

 TEE 0.718 0.033 0.734 -1.852 0.033 

 

Wine panel 

1 EC 0.737 0.016 0.413 -2.741 0.0076 

 TEE 0.777 0.012    

2 EC 0.730 0.016 0.624 -3.861 0.0002 

 TEE 0.774 0.008    

3 EC 0.723 0.017 0.758 -3.687 0.0004 

 TEE 0.759 0.010    

4 EC 0.716 0.018 0.732 -2.615 0.0108 

 TEE 0.743 0.011    

5 EC 0.708 0.018 0.764 -3.697 0.0004 

 TEE 0.746 0.013    

6 EC 0.701 0.019 0.754 -2.640 0.0101 

 TEE 0.730 0.019    

7 EC 0.693 0.020 0.755 -5.878 0.0000 

 TEE 0.756 0.014    

8 EC 0.685 0.021 0.782 -9.318 0.0000 

 TEE 0.783 0.018    

9 EC 0.677 0.022 0.836 -13.168 0.0000 

 TEE 0.801 0.012    

10 EC 0.669 0.022 0.570 -10.281 0.0000 

 TEE 0.815 0.011    

11 EC 0.661 0.023 0.690 -11.497 0.0000 

 TEE 0.806 0.012    

Pooled EC 0.700 0.020 0.648 -19.031 0.0000 

 TEE 0.772 0.013    
EC is error components, TEE is technical efficiency effects. Correlation is a Pearson’s r. The t-statistic 

tests for equality of means across methods assumes equal variances. 
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Figure 2 Efficiency scores for the wine panel  
 

With the flat error components efficiency curves, it was surprising to find how 

much the mean scores varied. The difference in the means of the pooled scores 

was significant at the highest level and the means differed by 10%, but Table 6 

reveals that there is a definite time dimension to the differences. In periods 1-6 

the means differed by 4-6%, but after that the discrepancy systematically 

increases to an alarming 22% in periods 10 and 11. All annual differences were 

significant and the technical efficiency effects model produced higher estimates 

every time. The worst years for wine were periods 4, 5 and 6, coinciding with 

the 2008 global financial crisis when growing conditions were average to good 

in the winelands.  
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This leads to several observations. Firstly, irrigated agriculture seems less 

vulnerable to weather variation than extensive livestock production, but as a 

predominantly export product which a high imported content, wine grapes are 

vulnerable to macro-economic conditions. Secondly, the choice of stochastic 

frontier method is of more concern over longer than shorter periods and thirdly, 

the error components method will overstate the degree of collapse under 

worsening conditions. The data is not available to know if the opposite is also 

true, namely that the error components estimates be inflated related to the 

technical efficiency effects conditions when scores are improving and 

converging. More work is needed to understand how efficiency scores vary with 

size and fit of the inefficiency module in the technical efficiency effects method. 

 

 

6 Conclusion 
 

This study re-analysed two previously published datasets to investigate the 

degree of similarity between the efficiency scores produced with different 

stochastic frontier methods. Results show that Battese and Coelli’s (1992) error 

components model rarely produces the same efficiency estimates as Battese and 

Coelli’s (1995) technical efficiency effects model and where differences are 

significant, that the technical efficiency effects method tend to bias scores 

upwards. Therefore, there is a price to pay for the convenience of an intuitively 

simple set of monotonically increasing performance scores, which recommends 

the use of the model with the best explanatory power, even if it is more difficult 

to communicate its results to interdisciplinary and lay audiences. As 

compromise the analysis might begin with fitting a technical efficiency effects 

model, which can then be followed up with an error components analysis or a 

second stage regression of scores on a time trend. 
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