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Abstract

Information and communication technologies hold much promise for use in education in developing countries. This study reports on

an evaluation conducted on the introduction of computers in the delivery of the mathematics curriculum in one of the provinces of South

Africa. Although the request was for an outcome evaluation very early in the implementation of the program, it was tailored in such a

way as to fulfill a more formative role. Despite substantial variability in implementation, and in most cases with very weak exposure of

the learners to the intervention, sufficient evidence emerged to indicate that this mode of curriculum delivery may be effective.

Improvement in mathematics performance was related to a range of variables: some concerned classroom teaching practices, some

referred to social differences between the learners, and some to the specific intervention. The strongest of these predictors in the sample

was the strength of the intervention: the more time learners spent on using the software to study mathematics, the more improvement

they showed from 1 year to the next in their performance in the subject.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Current discussions in educational settings acknowledge
the value of incorporating information and communication
technologies (ICTs) into school curricula. This value
however is not added automatically, and careful planning
and sufficient support is required to improve learning and
teaching. For example: teachers must receive sufficient
training in how to use computers as well as in how to
use content-specific software (BECTA, 2000; Howell &
Lundall, 2000); the choice of software must be appropriate
to the learning tasks (Chang, Sung, & Chen, 2001;
Veerman, Andriessen, & Kanselaar, 2000); pupils and
teachers must have good access to the new technology
(Wenglinsky, 1998); and schools should have sufficient
financial support to maintain and sustain the level of
provision (Howell & Lundall, 2000). If this is done, there is
ample evidence that ICTs can enhance learner performance
and develop teachers professionally (e.g. Dwyer, 1994;

Interactive Educational Systems Design, 1996; Jurich,
1999; SIIA, 2000; Soloway, Lockhead, & Clement, 1982).
There are few examples of ICTs being used as tools in

developing countries, where the adequacy of implementa-
tion and support is often not to be taken for granted, and
there are even fewer well-designed evaluations of their
implementation and use. In this paper, we report on the
outcome evaluation of an ICT schools-based intervention
in poor, disadvantaged schools around Cape Town in
South Africa. As we will show, the evaluation tells a tale
about ICT use and effectiveness that occurs frequently in
countries around the world.
South African learners are able to take mathematics and

science at one of two levels for their exit certificate: at the
higher grade or at standard grade. Higher grade passes are
the prerequisite for entry into many university courses. The
low number of high school learners in South Africa who
matriculate (graduate at the end of senior school) with
mathematics and science as subjects at the higher grade
(university entrance) level has been a source of concern for
some time. On the one hand, the number of candidates
taking mathematics as their final year subject increased by
90.4% between 1991 and 2003, yet the number taking it
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at the university entrance level dropped by 32.95% over
the same period. Moreover, as the following table shows,
the number of mathematics passes at the university
entrance level has remained virtually static over the
same period. The science passes follow the same pattern
(Table 1).

When it comes to race differences, race being generally
accepted as a proxy for educational disadvantage, the
results are even starker. Only 1% of all African matricula-
tion candidates in 2003 passed mathematics at the higher
grade with a D symbol or higher, usually required to get
into the more prestigious university courses, at a time when
African candidates outnumbered white candidates by seven
to one (Kane-Berman, 2006). And when it comes to the
Western Cape Province, where the Khanya Project was
launched, the number of African passes in mathematics at
the higher grade in 2002 was a scant 200 (Clynick & Lee,
2004, p. 50). It is not hard to see why, by 2002, not only
government but academia and the private sector had all
become seriously worried about the capacity of the public
school system to produce high level mathematics and
science graduates for the country.

Quite why mathematics and science scores have
remained so impervious to attempts to reform schooling
during the first 10 years of democracy in South Africa is the
subject of much debate. To be sure, there is little
disagreement about the causes: a legacy of poor resourcing,
poor teacher preparation, and a curriculum that is not
explicit about the performance standards expected are
amongst the most common causes cited (Taylor, Muller, &
Vinjevold, 2003). By 2001, the desire to make a tangible
difference to this parlous state of affairs was common
cause. If computers and software could improve learners’
achievement in mathematics and science, computers in
South African classrooms might prove invaluable to a
country that faced such low levels of achievement.

1.1. The Khanya project

The Khanya Technology in Education Project (for more
information, see www.khanya.co.za) was officially estab-
lished in May 2001 by the Western Cape Education
Department (WCED). The degree of initial support for it
can be gauged by the very generous funding it received.
The Khanya Project is an ambitious plan to strengthen
curriculum delivery via the use of information and
communication technology (ICT). Considering that there
are nearly 1500 schools in the Western Cape, and that
every two extra schools included in the project will cost an
extra R1 million (approximately $150,000, and a figure
which seems to exclude on-going support and mainte-
nance), the scale and scope of the project is not small. It is
targeted at secondary schools in the Western Cape, and by
2006 it had helped 595 schools to use technology
effectively. This paper reports on an evaluation of only
one aspect of this intervention, relating to the delivery of
the mathematics curriculum in grades 11 and 12 in the
poorest schools in the region.
To qualify for inclusion in the project, schools had to be

‘‘poor’’, according to the WCED poverty index of schools,
and reasonably well-managed, again according to the
Department’s ‘‘management index’’ of schools. Once a
school qualified, a secure room (‘‘the computer labora-
tory’’) had to be found that was able to house approxi-
mately 40 computers per school, again meeting certain
minimum criteria. In some schools, computers were
installed in the classrooms.
These computers provided the platform to support

proprietary commercially available software developed by
a local software company, to deliver the mathematics
curriculum. The software is called MasterMaths (MM), a
tutoring system that consists of the following components:
(a) the MM tutor (a person) who oversees and coordinates
students’ engagement with the system; (b) the tutor
administrator, which is the software used by the tutor to
control the functioning of the system; (c) the teaching/
learning modules, including test modules, which students
have access to through software called the M2 browser; and
(d) module notes and worksheets that are intended to
reinforce teaching and learning (see www.m2maths.co.za).
The modules accessible through the browser cover the
mathematics curriculum from grade 7 to grade 12 and there
are 293 teaching modules available.

2. Method

2.1. Planning the evaluation

A year after the project was officially established, an
evaluation tender was advertised, and awarded to the first
two authors. That there was something substantial to
evaluate a year after the project’s establishment is rare in
the history of education projects in this country. Further-
more, the project was ambitious in asking for an outcome
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Table 1

Number of learners passing mathematics and science at the higher grade,

1991–2003

Year Total no. of

grade 12 passing

candidates

Mathematics

higher grade

passes

Science higher

grade passes

1991 210,314 20,677 23,109

1992 243,611 21,558 24,172

1993 226,943 20,365 23,835

1995 283,742 29,475 34,895

1996 279,487 22,416 25,462

1997 264,795 19,575 26,658

1998 272,488 20,130 26,473

1999 249,831 19,854 24,191

2000 283,294 19,327 23,344

2001 277,206 19,504 24,280

2002 305,774 20,528 24,888

2003 322,492 23,412 26,067

Source: Clynick and Lee (2004, p. 32).
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evaluation, in terms of improvement in learner perfor-
mance in mathematics. It is unusual for a newly launched
program, especially such a complex one, to ask for an
outcome evaluation so early in its existence. While this is
indeed commendable, there is also a serious risk attached
to it. Programs have unique developmental trajectories,
and outcome evaluations usually are not recommended in
the early stages of their development.

Negotiations with stakeholders indicated that an out-
come evaluation was not possible in all schools. In
consultation with these stakeholders, we negotiated to
conduct the study in five overlapping phases:

1. Conduct an evaluability assessment.
2. In a sample of schools, conduct an assessment of the

technical installation and training provided to teachers.
3. Obtain expert opinion on the software.
4. Conduct an implementation assessment.
5. Carry out an early evaluation of outcomes.

Space does not allow for an examination of all these
steps in this paper. We concentrate on the outcome evalua-
tion component, because we believe there are some
interesting procedures and findings to report. Where
appropriate, aspects of the earlier phases will be alluded
to, where this is required for an understanding of the
outcome evaluation.

Suffice it to say that the evaluability assessment,
conducted along the guidelines provided by Wholey
(2004), convinced us that there was general acceptance
and support for Khanya as a project among all stake-
holders regarding the project and evaluation goals and
objectives, the project’s performance criteria, and the
project and evaluation priorities, to proceed with the
evaluation. Furthermore, an independent snapshot, con-
ducted via interviews and site visits, of how the project had
been implemented in a small sample of schools, revealed
that its installation of technology seemed to be as good as
could reasonably be expected.

2.2. An evaluation of outcomes

In the evaluability assessment, consensus was reached
among the stakeholders that the outcome question of
interest was: does learner performance in grade 12
mathematics improve as a result of curriculum delivery
via MM? The logic behind the intervention was as follows:
the principal cause of the low achievement levels in
mathematics was assumed to be the low capacity of
teachers, and that ICTs could compensate for low-capacity
teachers. Indeed, these were the core suppositions driving
Khanya, and we confirmed this via interviews with primary
stakeholders. Furthermore, since the source of the problem
was seen as poor capacity of teachers, it resulted in poor
curriculum delivery. We took that to mean that Khanya’s
computers and software were expected to provide the
coverage of the curriculum that poorly trained teachers

were not able to provide. In other words, if the symptom
was poor learner attainment, and the cause was poor
curricular coverage because of poorly trained teachers,
then the cure was to improve curricular ‘‘dosage’’ by means
of IT hardware and software. This was the logic we set out
to evaluate.
A quasi-experimental design was used to obtain com-

parative learner performance data in five treatment/
experimental and five control schools.
To set up a non-equivalent control group design, five

schools were randomly selected from a list of the 146
schools that had started to receive the intervention prior to
2003. In addition, they had to be operational (in Khanya
terms) for at least 12 months. Five of these 146 schools
were selected at random, subject to two exclusion rules: the
technology had to be installed by the project, with no other
ICT curriculum delivery in place at the school; and the
schools had to have a below average poverty index. These
five schools also were the ones at which we conducted our
snapshot investigation of the technology installation, so
that we were confident that for the five experimental
schools the installation had gone as planned.
A further five schools, which had been selected for

participation in the project, but where the curriculum was
not yet being delivered via the software, were identified and
matched to the five experimental schools in terms of
geographical location and poverty index. They acted as the
non-treatment or control group, and were to reach the
implementation and delivery stage by November 2003, by
which time the data collection for this study was to have
been completed.
As indicated earlier, the main outcome of interest was

learner performance in mathematics. We took as measures
of performance marks obtained at the end of grade 11 in
mathematics (as a ‘‘before’’ measure), and marks obtained
in the grade 12 final examination (as an ‘‘after’’ measure).
The grade 12 examinations are set nationally, and are thus
comparable across schools. Unfortunately, the ‘‘before’’
measure was less satisfactory, since schools set their own,
often inconsistent, examinations. Nevertheless, two main
considerations settled the matter: standardised mathe-
matics tests for grade 12 were not available in South
Africa, and it would have been too costly and time-
consuming to develop them for this study; and learner
performance in grade 12 mathematics was exactly what the
intervention was designed to affect.

2.3. Sample

A total of 580 learners (271 in the control group, and 309
in the experimental condition) constituted the study
sample. Fifty-one percent of the sample were females,
and 49% males. Approximately 43% reported that they
usually spoke Afrikaans at home, and 10% English. The
remaining 47% were presumed to speak an African
language at home. Several indices that were collected in
the self-report questionnaire suggest that the study sample
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was drawn from a low to moderately low socio-economic
group, confirming the school’s standing on the WCED’s
poverty index. Seventy-nine percent reported that they
have either no books at home, or a total number that
would fill one shelf; and that approximately six people lived
in their home. More than 70% of the parents did not finish
high school.

2.4. Measures

At the school level, data were collected directly from the
WCED’s data bank. Information on more than 70
variables for the schools in our study was collected. These
included indices of the quality of school management,
absenteeism, and repeat rates (overall, and for mathematics
in particular), the total percentage of the school budget
invested in ICTs, and the degree to which the school
principal supported the Khanya project.

At the learner level, we administered a lengthy ques-
tionnaire to all grade 12 mathematics learners at the 10
schools. A great many variables were assessed, including
pre-existing level of mathematics ability, degree of access to
computers outside of school, time spent on computers both
inside and outside of school, and on the MM system,
computer literacy, confidence in using IT, motivation for
mathematics, degree of enjoyment of learning mathe-
matics, intention/commitment to study further (i.e. after
school), home language, and parental encouragement/
placing of importance on performance at mathematics.

The grade 11 marks in mathematics for learners were
obtained directly from the schools.

The grade 12 marks in mathematics were downloaded
from the WCED data base and were sent directly to the
evaluation team in a data file.

Computer usage logs were downloaded at three of the
experimental schools (these were not available for the other
two).

3. Results

The overwhelming majority of pupils in the study sample
started grade 12 mathematics at the standard grade level
(541/578 ¼ 94%), and this majority increased by the end of
the 2003 school year (550/578 ¼ 95%). The number of
higher grade enrolments was too low to include in further
meaningful analysis, and all further analyses are restricted
to pupils who were registered at the standard grade level at
the end of grade 11 in 2002. (In fact, this is one of the
objectives of the Khanya project: to increase the percentage
of learners taking mathematics at higher grade.)

The overall level of pre-intervention performance in
mathematics across the 10 schools was comparatively poor.
The average mark across experimental and control schools
was 34%, as is shown in Table 2. There was also
considerable variation between schools. Thus, 58% of
pupils scored less than 40% on the final grade 11
mathematics examination, but for some schools this figure

was as high as 96%, and for others it was as low as 15%.
The experimental and control schools differed significantly
on the average grade 11 mathematics mark (a one-way
analysis of variance was conducted, which yielded the
following statistics: F ¼ 35.44; d.f. ¼ 1,523; M.S.E. ¼
366.72; po0.001; Z2 ¼ 0.06), with the experimental schools
scoring an average of almost 10% more than the control
schools, as is shown in Table 2. However, this quite large
difference of approximately one-half a pooled standard
deviation was largely due to the very poor performance of
one control school in the grade 11 examination (which had
an average grade 11 mark of 15%).
The difference between the experimental and control

groups of schools on the grade 11 mathematics results
means that it was not possible to compare them directly on
the grade 12 mathematics result. This problem was dealt
with by using the difference between the grade 11 and
grade 12 results for all comparisons of experimental and
control schools, and in all attempts to model performance
in mathematics on the basis of demographic, motivational,
or program variables.

3.1. Comparison of groups on difference scores, grades

11–12

Difference scores between the WCED grade 12 final
mathematics result and the school grade 11 final mathe-
matics result were computed for individual learners, and
the experimental and control groups compared on their
respective averages for these scores. This comparison
assesses the ability of the Khanya intervention to improve
performance of learners in the experimental schools,
relative to performance of learners in the control schools.
In technical terms, the decrease over time, i.e. between

the final examinations of grade 11 and grade 12, taking the
experimental and control schools as a whole, is statistically
significant, and the difference between the experimental
and control schools, taken as a whole, is statistically
significant, but the interaction is not (a repeated measures
mixed model analysis of variance shows this: for the time
factor F ¼ 12.94; d.f. ¼ 1,516; M.S.E. ¼ 111; po0.0003;
Z2 ¼ 0.003; for the experimental/control factor F ¼ 30.6;
d.f. ¼ 1,516; M.S.E. ¼ 671; po0.0001; Z2 ¼ 0.05; and for
the interaction F ¼ 2.07; d.f. ¼ 1,516; M.S.E. ¼ 111;
p40.15). In other words, the results for the grade 12
examination are lower, on average, than the results for the
grade 11 examination, and the group of experimental
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Table 2

Performance of control and experimental schools in grade 11 (2002) and

grade 12 (2003) mathematics

Grade 11 Grade 12

Mean S N Mean S N

Control groups 29.01 21.44 253 27.5 19.74 260

Experimental groups 38.97 16.75 272 35.66 20.92 274

J. Louw et al. / Evaluation and Program Planning 31 (2008) 41–5044
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schools consistently scores higher than the group of control
schools. The group of experimental schools starts grade 12
scoring higher than the control schools and they end grade
12 scoring higher than the control schools.

Earlier we pointed out that the low performance of the
control schools on the pre-test was largely due to the very
poor and unusual performance of one control school on
the grade 11 examination. The comparatively large
numbers of students enrolled in this school, and their poor
performance in the grade 11 mathematics examination
negatively weighted the results of the group of control
schools. The comparison of control and experimental
conditions set out above may therefore profit from an
examination of the specific school pairings we mentioned
earlier. By examining school pairings, we will be able to
isolate this strong biasing effect to the single pairing which
involves this particular school. The other pairings may
reveal a different picture about the efficacy of the Khanya
intervention.

Accordingly, each of the school pairings was examined,
comparing experimental and control schools within the
pairing on the difference between grade 11 mathematics
and grade 12 mathematics results. As explained earlier,
matching was effected on the basis of geographical
location, poverty index, and school management index.
Table 3 reports the results for comparisons of the matched
schools, including one-way analyses of variance tests of
differences between each matched pair. The table shows
that three of the individual comparisons are statistically
significant, and of these two are in the expected direction,
and one in the opposite direction. The evidence in favour of
the effectiveness of the intervention is thus not clear from
these comparisons.

3.2. Strength of the intervention: description and analysis

The key aspect of the Khanya intervention around
mathematics is the amount of time that learners are
exposed to the MM program. If learners in experimental
schools receive low exposure to the program, one would
expect there to be little improvement relative to learners in
the control school. Conversely, if learners in experimental
schools receive high exposure to the program one expects
there to be improvement in mathematics performance
relative to learners in the control schools. We attempted to
obtain information from log files on computer network

servers in the experimental schools in order to chart the
strength of the intervention, and in order to understand the
possible relationship between the intervention and perfor-
mance at mathematics in grade 12. Unfortunately, we were
only able to obtain log files from three of the experimental
schools. One of the experimental schools inadvertently
deleted their log files, and another appeared to have a
poorly functioning laboratory (despite our earlier check on
its installation), and did not appear to have any log files at
all (the server was down for six months during that year).
Analysis of the log files reveals that learners spent very

little time logged on to the MM program, and they logged
on comparatively infrequently. Table 4 shows that the
average time logged on to the MM program was only
158min, and that on average learners logged on to MM
approximately seven times. These are not estimates of the
total intervention experienced by learners in the three
experimental schools in question, since the log files reflect
the period from April to September 2003 only. Also,
learners use the MM system in pairs, so the amount of time
spent on the system may not accurately reflect the amount
of intervention experienced by learners. However, the
statistics reported in the table are so low as to raise serious
concerns about the implementation of the intervention.
It is also clear from Table 4 that pupils spend different

amounts of time using the MM system. This suggests a
second analytic framework for evaluating the Khanya
intervention. Pupils who spend more time on the system
should show better mathematics performance than pupils
who spend less time, all other things being equal. The
difficulty, of course, is ensuring that ‘‘all other things are
equal’’. It would not be a very revealing analysis to chart
the relationship between grade 12 mathematics perfor-
mance and amount of time spent on MM, since learners
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Table 3

Difference score statistics for individual matched pairs of experimental and control schools

School

pair

Experimental

difference score

Control difference

score

F d.f. p M.S.E. Z2 Direction

A �1.66 10.65 32.54 1,170 o0.0001 120.1 0.16 EoC

B �1.34 �20.68 63.83 1,159 o0.0001 194.1 0.29 E4C

C �7.2 �6.36 0.07 1,35 40.8 77.33 0.002 E ¼ C

D �4.00 �19.51 48.36 1,90 o0.0001 85.8 0.34 E4C

E �3.65 �3.58 0.0007 1,60 40.98 104.8 0.001 E ¼ C

Table 4

Descriptive statistics for ‘‘strength’’ of intervention delivered to learners

Mean S Minimum Maximum N

MasterMaths

total time spent

158.13 102.6 5 459 126

MasterMaths

total no. of

sessions

7.4 4.3 1 20 126

Note: values in the first row are minutes, and values in the second row are

number of sessions longer than 5min.

J. Louw et al. / Evaluation and Program Planning 31 (2008) 41–50 45
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who do better at mathematics may be expected to spend
more time on MM (i.e. the direction of the relationship is
directly opposite to that predicted). This could be due to
greater motivation or higher mathematics self-esteem, or
indeed any number of other factors. It seems best to chart
the relationship between improvement in mathematics
performance across grades 11 and 12 and time spent on
MM, as such an analysis attempts to remove pre-existing
differences in mathematics performance between learners,
and by implication, the variables that are associated with
individual differences in performance.

We therefore conducted correlational analyses of the
relationship between improvement in mathematics perfor-
mance, and the amount of time spent on the MM system.
This analysis revealed that the relationship between
amount of time spent on MM and improvement in
mathematics performance is positive, statistically signifi-
cant, and moderate in strength (r ¼ 0.37; n ¼ 125;
po0.001). The same is true for the relationship between
number of sessions spent on the MM system and
improvement in mathematics performance (r ¼ 0.36;
n ¼ 125; po0.001). This may be considered somewhat
surprising, since there is a fairly severe restriction of range
on both of these indices of exposure to the MM system:
most learners spend fewer than 100min and fewer than 10
sessions on the system in total. (An anonymous reviewer
has questioned our interpretation here, arguing that the
skewness in our data is likely to have inflated the
correlation between time spent on Master Maths and
improvement in Mathematics performance. He/she sug-
gested re-calculating the correlation after log-transforming
the predictor. We did this, and found a slightly increased
correlation of r ¼ 0.39.) The relationship between the
strength of the intervention and improvement in mathe-
matics performance is likely to be much stronger when the
strength of intervention is allowed to range more widely,
i.e. when learners spend more time on average on the
system, and when there is more variation in the amount of
time they spend on the system. One should also note that
the increase in performance shown as a function of time,
and sessions spent on MM is counter to the general
decrease between grades 11 and 12 that the cohort shows as
a whole.

In order to explore further the nature of this relation-
ship, we repeated the analysis for each of the three schools
listed above, but focused only on the outcome variable
recording amount of time spent on the MM system.

Table 5 reports Pearson correlations and other appropriate
statistics.
These results reinforce the impression that there is indeed

a relationship between the intervention and improvement
in mathematics performance. The relationship is present in
each of the three schools, but it is much stronger (and
statistically significant) in two of the three. It is also clear in
each of the three cases that the strength of the relationship
is likely to be underestimated, since there is restriction of
range on the predictor variable (time spent on MM).

3.3. Predictors of improved mathematics performance

We have established in the preceding analysis that the
intervention appears to have a positive effect on mathe-
matics performance, specifically improvement between
grades 11 and 12. However, it is unlikely that it is the
only predictor of improvement in mathematics perfor-
mance. It is also possible, although unlikely, that learners
who experienced higher ‘‘strengths of MM dosage’’ are
alike in other ways, and that those similarities explain the
improvement in mathematics performance rather than the
intervention itself. In order to answer these questions, and
also simply to understand what variables are associated
with improvement, and what outcomes might be produced
by the Khanya intervention other than mathematics
improvement, we conducted a number of correlational
and regression analyses.

3.3.1. Non-performance differences between control and

experimental schools

The Khanya intervention intends to produce improve-
ment in mathematics performance. On the way to produce
this improvement, however, it should produce changes in
other variables that could lead to the desired improvement,
for instance motivation, or mathematics self-esteem. We
did not have a clear idea of what these variables would be,
nor it is clear in the program theory underlying the
intervention. We therefore examined differences between
the control and experimental schools on a wide variety of
non-performance outcomes, as an attempt to elaborate or
chart the routes through which Khanya may or may not
bring about improvement in mathematics performance.
Table 6 lists variables on which the experimental and
control groups differed significantly.
It is clear from the table that the experimental group

scores higher on a number of items than the control group.
There are some they should obviously be scoring higher on,
such as whether ‘‘the teacher uses a computer to
demonstrate ideas in mathematics’’, but there are also a
number of items that relate to the teaching of mathematics
on which they also score higher. Thus, the experimental
group appears to be shown more frequently how to do
mathematics problems, they report that they copy notes
from the board more frequently, that they use calculators
more frequently, that the teacher requires more homework
from them, and that the teacher explains mathematics rules
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Table 5

Pearson correlation coefficients for the relationship between time spent on

MasterMaths and improvement in mathematics performance, per school

School Coefficient (p-value, pairs)

A r ¼ 0.32 (p40.08, n ¼ 29)

B r ¼ 0.47 (po0.009, n ¼ 29)

C r ¼ 0.46 (po0.001, n ¼ 68)

J. Louw et al. / Evaluation and Program Planning 31 (2008) 41–5046
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and definitions more frequently. They find mathematics
less difficult than the control group finds it, and they do
fewer mathematics projects than the control group.

On the face of it, there are a number of differences
between the experimental and control schools, and many of
these are on variables that seem plausible candidates for
improving mathematics performance. The difficulty is in
deciding whether they are a function of the Khanya
intervention, or whether they are pre-existing differences
due to different school or teaching practices, or less
plausibly, whether they are differences produced by some-
thing other than the Khanya intervention, but contem-
poraneous to it. We will make an attempt in a later section
of this paper to examine whether the effects of the Khanya
intervention—as indexed by the time spent on MM by
learners—are dependent, or perhaps even an artefact of
these variables, but that is as far as we can take it in this
analysis without conducting further research.

3.3.2. Predictors of improved performance: zero order

relations

The surveys we conducted among learners at the 10
target schools in 2003 were used to obtain information
about a wide variety of variables. We correlated mathe-
matics improvement scores (i.e. the difference scores
indexing change between grade 12 and grade 11) with
these variables, and found a number of statistically
significant correlations. These are reported in Table 7. A
number of variables are correlated with improved perfor-
mance in mathematics, including time spent on MM, some
motivational variables (e.g. the perception that effort in
mathematics will lead to better results), some teaching
variables (e.g. the reported extent to which teachers check
homework), and some specific perceptions about the role
of computers in learning mathematics (e.g. the belief that
the use of computers can have a positive effect on
schoolwork).

Of course, these variables should not be considered
independently, as many are inter-correlated. Similarly,
some of the variables that are significant predictors are
likely to be proxies for other phenomena or processes (e.g.

how much Afrikaans the learner speaks at home is likely to
be a rough index of socio-economic status, at least in this
sample), and they should not be interpreted as routes to
mathematics improvement.

3.3.3. Predictors of improved performance: multiple

regression analysis

As we indicated immediately above, the correlations of
individual variables with the mathematics improvement
score should be read with a caveat in mind, namely that the
variables are not independent. One way to better reconcile
the list of predictor variables is to conduct a multiple
regression analysis. (We considered a more sophisticated
method of analysis, hierarchical linear modelling, which
appears to be better suited to our multi-level design, but we
rejected this. Several weaknesses in our design militated
against this choice, e.g. we had too few clusters at some
levels [only three experimental schools with a full variable
set] to make this a statistically powerful option.) This
analysis has the advantage of partialling the contributions
of individual predictors for their correlations with other
predictors in the analysis, and for pointing to variables that
it may be useful to study in greater depth, or to include in
more sophisticated modelling of mathematics improve-
ment. Very important for our purposes is to understand
whether the strength (and statistical significance) of a key
intervention variable, viz. time spent on MM, is dependent
on other predictor variables, and whether it will remain a
significant predictor once we have controlled for the effect
of other predictor variables. There are disadvantages to
multiple regression analysis too, though, and perhaps the
most important of these in the present case is that it is used
as an empirical replacement for program model develop-
ment. Precisely which variables end up in the final model
we report here has much to do with random sampling
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Table 6

Non-performance differences between the experimental and control

schools

Mathematics is difficult (EoC)

The teacher shows us how to do mathematics problems (E4C)

We copy notes from the board (E4C)

We work on mathematics projects (EoC)

We use calculators (E4C)

We use computers (E4C)

The teacher gives us homework (E4C)

The teacher uses a computer to demonstrate ideas in mathematics (E4C)

The teacher explains the rules and definitions (E4C)

The teacher ask us what we know related to the new topic (E4C)

How many times per week do you get mathematics homework? (E4C)

Note: the term ‘‘E4C’’ indicates that the experimental schools recorded a

higher score than the control schools.

Table 7

Correlations of predictors with criterion (improvement in mathematics

performance)

Predictor Correlation with

criterion

Time on MasterMaths 0.37

Sex 0.16

Afrikaans speaking 0.22

Perception that effort at mathematics leads

to success

0.21

Mathematics performance leads to jobs 0.1

Friends think it is important to do well in

mathematics

0.14

Copy notes from the board often 0.2

Teacher checks homework 0.14

Learners use the board in mathematics lesson 0.19

Teacher explains rules and definitions 0.1

Look at textbook while teacher explains 0.17

Computer makes work more enjoyable 0.15

Computer makes schoolwork take more time 0.14

Computer has an effect on schoolwork 0.21

All correlations reported in this table are significant at po0.05.
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variation, and analysis of a different sample may well
identify different model variables.

We chose a forward stepwise method as a selection
method for the multiple regression analysis. We chose also
to separately analyse three subsets of our data, namely (i)
the set comprising all five control schools, (ii) the set
containing all five experimental schools, and (iii) the set
containing only the experimental schools for which we had
data regarding the use of MM. The latter set was much
smaller than either of the former two, but was important to
analyse, since it contained the clearest indicator of
intervention strength. It was also important to separate
the control from the experimental schools, as we wanted to
examine the comparative importance of variables relating
to the use of computers in learning mathematics.

Table 8 shows the model selected by the stepwise
procedure in the case of the control schools. Teaching
and motivational variables dominate in the list, and have
higher values of b on average than other variables (roughly
indicating greater importance). Several demographic vari-
ables are also in the model, but not much should be read
into these variables, we suggest, as they are likely to be
sampling artefacts.

Table 9 shows the model in the case of the experimental
schools. The stepwise algorithm identified teaching variables

and specific positive perceptions about using computers to
do mathematics and schoolwork as statistically significant
predictors. However, it should be noted that the amount
of variance explained by the full model is comparatively
small. Also, none of the sampling variables entered the
model, as they did in the model for the control schools.
Table 10 shows the model in the case of the experimental

schools for whom intervention data (time spent on MM)
were available. Four variables were selected for inclusion
by the stepwise algorithm, namely total time spent on MM,
the perceived importance attached by a learner’s mother to
the learner’s performance in mathematics, one variable
related to teaching practices, and one variable related to
perception of the role of computers in schoolwork. The
MM variable was highly weighted in the model (just as it
was in all the earlier analyses involving it), and the variance
resolved by the model was considerably higher than that
for the experimental group which did not include the MM
variable. In order to check further the salience of the MM
variable, a regression model consisting of all the variables
in Table 10 except the MM variable was computed, and
compared to the full model. The reduced model accounted
for only 15.5% of the variance, compared to the 33% of
the full model, and this difference was statistically
significant (F ¼ 18.8; d.f. ¼ 1,76; po0.001). In other
words, the intervention variable contributed substantial
and significant variance to the model, over and above that
contributed by other variables.
We may sum up these findings as follows: a number of

variables predict improvement in mathematics perfor-
mance. Some of these relate to teaching practices in the
classroom, some relate to social differences between
learners, and some relate to the specific intervention
implemented by the Khanya project. The strongest of
these predictors in the present sample is the strength of the
intervention, and its predictive capacity does not appear to
be reducible to any other variable in our analysis.

4. Conclusion

The Khanya project aims ultimately at improving the
mathematics performance of grade 12 learners through the

ARTICLE IN PRESS

Table 8

Predictors selected by a stepwise algorithm for the model of mathematics

improvement: control schools

Variable b

Effort leads to success at mathematicsa 0.24

Learners use the board 0.23

We look at textbook while teacher explains 0.21

How often do you speak Afrikaans at home? 0.21

Teacher checks homework 0.18

How many people live in your home? �0.14

Sex 0.12

All b coefficients are statistically significant at po0.05. Some coefficients

have been reversed according to scale direction. Full model r2 ¼ 0.37;

F ¼ 14.1; d.f. ¼ 8,194; po0.0001.
aThis variable is a composite of a number of scale items. It is intended to

assess the extent to which learners believe that success in mathematics

derives from effort and factors within the control of the respondent.

Table 9

Predictors selected by a stepwise algorithm for the model of mathematics

improvement: experimental schools

Variable b

We often have a quiz or test in class 0.29

I like using computers to learn mathematics 0.19

We often check each other’s homework 0.16

The computer makes schoolwork easier 0.17

All b coefficients are statistically significant at po0.05. Some coefficients

have been reversed according to scale direction. Full model r2 ¼ 0.14;

F ¼ 5.5215; d.f. ¼ 4,166; po0.0001.

Table 10

Predictors selected by a stepwise algorithm for the model of mathematics

improvement: experimental schools with data on amount of intervention

Variable b

Total time spent on MasterMaths 0.39

My mother thinks it is important for me to do

well in mathematics

0.27

The computer makes schoolwork easier 0.26

We often have a quiz or test in class 0.21

All b coefficients are statistically significant at po0.05. Some coefficients

have been reversed according to scale direction. Full model r2 ¼ 0.33;

F ¼ 9.58; d.f. ¼ 4,77; po0.0001.
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delivery of a computer based intervention. A key outcome
is thus whether the final results achieved in the WCED
grade 12 mathematics examination show an improvement
as a function of the intervention. In this paper, we report
analyses that suggest that the answer to this question is a
cautious ‘‘yes’’. In the first place, data from a quasi-
experiment provided equivocal support. In two matched
comparisons, schools that had received the intervention
maintained their grade 11 level of performance in the final
grade 12 examination, whereas control schools that did not
receive the intervention declined. However, this was not the
general pattern of results in the quasi-experiment, as two
experimental schools showed no improvement over the
matched controls, and one showed an advantage for the
control school over the experimental school. We must
conclude that there is only equivocal support for the
effectiveness of the intervention on the basis of the quasi-
experiment.

In the second place, we examined the relation between
the ‘‘strength’’ of the intervention and improvement in
grade 12 mathematics performance. This was achieved by
collecting log files from computers in three of the
experimental school laboratories, and correlating student
records of MM usage in those log files with improvement in
mathematics across grades 11 and 12. The first thing we
noted was that learners are in fact spending very little time
on MM in these schools, averaging less than 3 h over the
period April 2003–September 2003. However, the amount
of time that learners spent was significantly correlated with
improvement in mathematics performance. This was true
for each of the schools we examined, and for their
combination. Since learners were in fact spending very
little time on MM, the data showed considerable restriction
of range, and it is very likely that the correlation we
observed is an under-estimate. This is a clear, but not
conclusive indication that the Khanya intervention im-
proves mathematics performance in grade 12 learners.

5. Lessons learned

In evaluation terms, a number of observations can be
made. The major one probably relates to the request from
the program management for an outcome evaluation,
virtually within 2 years of launching the program. Our
earlier reports on implementation confirmed our initial
reservation: the program was still ‘‘settling down’’, as it
was still developing and perfecting its delivery system,
amongst other things. It was very early in the development
of the program to expect it to deliver unequivocal
outcomes. Nevertheless, in our pre-evaluation discussions
with management officials, we became convinced that this
request was not unreasonable, and thus agreed to proceed
with an evaluation design that took this into consideration.
From the program’s side, however, they had to acknowl-
edge the limitations of what such an early outcome
evaluation could achieve, and indeed the risks involved.
The discussion of risk also formed a major part of our

initial conversations with other stakeholders, as part of our
evaluability assessment. In these conversations, we made
sure that significant stakeholders, such as the Finance
Department, were prepared to accept the formative
nature of the evaluation; that it was aimed at improving
the program rather than delivering a definitive statement of
its effectiveness.
We believe that this strategy was successful. As we

assessed the technical installation at the schools, and the
implementation, these findings were fed back to the
program, which, in all cases that we are aware of, acted
on them. More importantly, the final report was framed in
a formative tenor, and was accepted as such by all
stakeholders. It enabled the program managers to act on
problems of implementation, even though these emerged as
part of an outcome evaluation. The major finding that
more time spent on the program led to improvement in
mathematics performance, obviously was very encouraging
to the program and the Western Cape Education Depart-
ment. It is worth noting too that this finding supports the
internationally established finding in empirical curricula
studies that ‘‘time-on-task’’ is a central component of the
construct ‘‘opportunity to learn’’ (Burstein, 1993; Shavel-
son, McDonnell, & Oakes, 1989).
Since the evaluation (2004), the Khanya project has gone

from strength to strength. In 2004, it won the Standard
Bank Public Sector Innovation Award, and in 2005, a
Silver Award at the Western Cape Premier’s Service
Excellence Awards. Quite recently (October 2006), it was
nominated in two categories of the 2006 African ICT
Achievers Awards (Top Public Sector Department Embra-
cing ICT in Africa, and Top Civil Society to Bridge the
Digital Divide in Africa).
The challenges we faced in implementing the evaluation

design should be obvious to the readers. What started out
as a quasi-experimental design, with schools as the unit of
analysis, ended up as a different quasi-experimental design
with individuals as the unit of analysis. Difficulties in
sustaining an evaluation design are not that unusual, but
technology provided opportunities to address these chal-
lenges. The fact that computers captured user logs (albeit in
a less-than-perfect way) turned out to be the key feature in
our evaluation, and in providing useful results in terms of
outcome. Indeed, this was one of our strongest recommen-
dations to program management: to ensure that these log
files are maintained and captured regularly. These data
sources provided distinctive indicators of individual levels
of ‘‘dosage’’, and they served the evaluation well.
Thus, we conclude this paper in the same way that we

concluded our report on the program. We caution against
an interpretation of these results that regard them as in any
way delivering a final judgement on its critical aspects.
Although it is an evaluation of outcomes, this phase of the
study, like the evaluability, technology and implementation
assessments, should have a formative function. That is, it is
intended to assist the program to perform better. This is an
evaluation for program improvement, aimed at providing
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early feedback to Khanya on how it is doing in terms of
achieving (some of) the objectives it set for itself.
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